There are 4 sets of questions to be answered. You can earn up to 100 points + bonus questions. Points are indicated next to each question.
RESEARCH QUESTION: Does an increase in bus frequency affect bus ridership in City A?
Several cities aim to support public transportation and increase ridership. There are several ways to encourage residents to utilize public transportation more often; one of those is to modify the transit schedule so as to increase the frequency of buses in peak times and reduce waiting time.
City A has opted for this solution and starting from May 1st has implemented a new bus schedule which increases bus frequency. At the end of the year, the mayor wants to estimate whether the decision was effective and ask you to analyze one year of ridership data to test the following hypothesis:
HYPOTHESIS: An increase in bus frequency has a positive effect on bus ridership in City A (i.e., the new schedule is effective).
Data on ridership were provided by the local transit agency. The variable “Passengers” represents the number of daily passengers on all buses in the city (in thousands). Data were collected from January 1st to December 31st. The intervention was implemented on May 1st (day 121 is the first day of the new schedule).
Variable name | Description |
---|---|
Passengers | Daily passengers on the buses (in thousands) |
You can load the data by adding this chunk to your file:
passengers <-
c(1328, 1407, 1425, 1252, 1287, 1353, 1301, 1294, 1336, 1371,
1408, 1326, 1364, 1295, 1320, 1260, 1347, 1316, 1287, 1292, 1259,
1349, 1274, 1365, 1317, 1341, 1316, 1313, 1285, 1369, 1309, 1446,
1422, 1397, 1358, 1310, 1294, 1373, 1161, 1320, 1376, 1335, 1382,
1455, 1374, 1267, 1318, 1370, 1297, 1391, 1269, 1341, 1238, 1391,
1296, 1260, 1330, 1447, 1296, 1389, 1278, 1319, 1333, 1372, 1325,
1299, 1299, 1312, 1352, 1355, 1404, 1317, 1330, 1325, 1368, 1311,
1310, 1242, 1247, 1366, 1401, 1282, 1298, 1301, 1341, 1353, 1398,
1352, 1300, 1442, 1365, 1411, 1360, 1100, 1334, 1336, 1274, 1303,
1487, 1341, 1436, 1294, 1390, 1338, 1400, 1325, 1352, 1353, 1288,
1304, 1338, 1355, 1212, 1386, 1426, 1380, 1425, 1287, 1337, 1288,
1348, 1308, 1402, 1370, 1401, 1363, 1312, 1457, 1367, 1320, 1338,
1447, 1371, 1402, 1461, 1382, 1260, 1341, 1309, 1317, 1509, 1403,
1324, 1347, 1351, 1307, 1267, 1312, 1472, 1403, 1327, 1501, 1470,
1438, 1416, 1369, 1355, 1317, 1448, 1423, 1401, 1356, 1400, 1356,
1452, 1435, 1387, 1372, 1390, 1538, 1460, 1474, 1510, 1360, 1424,
1275, 1381, 1453, 1430, 1404, 1350, 1375, 1327, 1312, 1464, 1478,
1536, 1397, 1229, 1337, 1442, 1316, 1455, 1312, 1505, 1440, 1408,
1429, 1280, 1560, 1422, 1363, 1349, 1326, 1400, 1464, 1488, 1352,
1485, 1446, 1540, 1435, 1377, 1287, 1480, 1353, 1359, 1493, 1387,
1314, 1478, 1306, 1462, 1533, 1261, 1488, 1482, 1461, 1452, 1540,
1438, 1423, 1425, 1353, 1489, 1546, 1401, 1459, 1527, 1341, 1516,
1406, 1414, 1442, 1272, 1371, 1435, 1446, 1287, 1496, 1442, 1614,
1305, 1459, 1342, 1478, 1501, 1357, 1428, 1444, 1431, 1425, 1434,
1488, 1508, 1454, 1436, 1485, 1522, 1437, 1396, 1407, 1382, 1444,
1494, 1303, 1552, 1282, 1352, 1412, 1378, 1579, 1543, 1425, 1404,
1380, 1593, 1555, 1532, 1514, 1485, 1504, 1442, 1401, 1453, 1493,
1522, 1417, 1545, 1422, 1540, 1447, 1447, 1575, 1431, 1516, 1542,
1519, 1485, 1526, 1400, 1563, 1471, 1517, 1506, 1514, 1444, 1348,
1588, 1574, 1275, 1331, 1436, 1475, 1570, 1513, 1469, 1573, 1432,
1467, 1513, 1475, 1572, 1430, 1512, 1532, 1487, 1474, 1508, 1410,
1455, 1445, 1544, 1500, 1517, 1496, 1606, 1613, 1526, 1487, 1540,
1511, 1534, 1620, 1409, 1542, 1517, 1493, 1443, 1463, 1391, 1583,
1516, 1700, 1422)
Use a time series model to analyze the impact of the program.
Q1: Prepare the data for the analysis.
passengers | Time | Treatment | TimeSince | |
---|---|---|---|---|
1 | 1328 | 1 | 0 | 0 |
2 | 1407 | 2 | 0 | 0 |
3 | 1425 | 3 | 0 | 0 |
4 | 1252 | 4 | 0 | 0 |
5 | 1287 | 5 | 0 | 0 |
6 | 1353 | 6 | 0 | 0 |
360 | 1463 | 360 | 1 | 240 |
361 | 1391 | 361 | 1 | 241 |
362 | 1583 | 362 | 1 | 242 |
363 | 1516 | 363 | 1 | 243 |
364 | 1700 | 364 | 1 | 244 |
365 | 1422 | 365 | 1 | 245 |
Q2: Run the time series model.
Q3: Now let’s look at the results more closely
Q4: An important aspect of a time series model is the counterfactual.
Time series with a control group
We have learned that there are threats to the validity of time series analysis. In particular, another event might have occurred at the same time of the intervention and caused the immediate and sustained effect that we observe.
A way to address this issue is to use a control group that is not subject to the intervention. This design makes sure that the effect we observe is the result of the policy intervention.
The mayor proposes to utilize city B as a control group. City B is a neighbor city with very similar characteristics to city A. Yet city B has not changed its bus schedule in the past year.
URL <- "https://raw.githubusercontent.com/DS4PS/pe4ps-textbook/master/labs/DATA/TS_Groups_lab.csv"
dat.grouped <- read.csv( URL, stringsAsFactors=F )
X | passengers | Time | Treatment | TimeSince | Group |
---|---|---|---|---|---|
1 | 1175 | 1 | 0 | 0 | 1 |
2 | 1146 | 2 | 0 | 0 | 1 |
3 | 1164 | 3 | 0 | 0 | 1 |
4 | 1159 | 4 | 0 | 0 | 1 |
5 | 1133 | 5 | 0 | 0 | 1 |
6 | 1127 | 6 | 0 | 0 | 1 |
group <-
c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)
When you have completed your assignment, knit your RMD file to generate your rendered HTML file.
Login to Canvas at http://canvas.asu.edu and navigate to the assignments tab in the course repository. Upload your HTML and RMD files to the appropriate lab submission link.
Remember to:
Platforms like BlackBoard and Canvas sometimes disallow you from submitting HTML files when there is embedded computer code. If this happens create a zipped folder with both the RMD and HTML files.